Semantic segmentation(stuff + things) = pixel-wise classification
object detection
Instance Segmentation = Semantic segmentation + distinguishing instances
two-stage
Mask R-CNN = Faster R-CNN + Mask branch
RoIAlign
single-stage
YOLACT(You Only Look At CoefficienTs) - real-time 연산은 어려움
mask는 아니지만 mask처럼 쓰이는 component인 prototypes(재료)를 구하여 span 하여(선형결합) mask를 만들고자 함
YolactEdge - (Yolact의 key 부분만 가져와서) real-time연산 가능하도록 노력
아직 연산이 smooth하진 않음
Panoptic segmentation(stuff + instances of Things)
UPSNet - FPN feature
Semantic + Instance head -> Panoptic head -> Panoptic logits
Instance head = find instance
Semantic head = Thing + stuff
VPSNet (for video)
1. Align refernece features onto the target feature map(Fusion at pixel level)
2. Track module associates different object instances(Track at instance level)
3. Fused-and-tracked modules are trained to synergize each other
'On Going > Computer Vision' 카테고리의 다른 글
Multi-modal learning (1) | 2023.12.07 |
---|---|
Landmark localization (1) | 2023.12.05 |
Object detection (2) | 2023.12.05 |
[Computer Vision] Super Resolution (0) | 2022.04.11 |
[Computer Vision] Face detector (0) | 2022.03.16 |
댓글