본문 바로가기
Have Done/Generative Model

Generative model Basic 1

by 에아오요이가야 2023. 12. 5.

\( P(x)\)를 학습한다 : input x에 대한 확률분포를 학습한다 

Suppose that we are given images of dogs we want to learn a probability distribution \(p(x)\) such that

- Generation : If we sample \(\tilde x ~ p(x), \tilde x \) should look like a dog

- Density estimation : \(p(x)\) shoud be high if x looks like a dog, and low otherwise.

- This is also known as explicit models.

 

- Then, how can we represent \( p(x)\)?

 

기본적인 확률분포는 알고있어야해요~

1. Bernoulli distribution : coin flip

2. Categorical distribution : m-side dice

 

Example

RGB image의 single pixel을 Modeling 한다면?

\( (r, g, b)~p(R, G, B) \)

- Number of cases? => 256 x 256 x 256

- How many parameters do we need to specify? => 256 x 256 x 256 -1

 

\(X_1,..., X_n, n\) 개의 binary pixel을 modeling 한다면?

- Number of cases => 2x2 x... x2 = \(2^n\)

- How many parameters do we need to specify? => \(2^n-1\)

 

-------> 어쨌든 전체경우의 수를 다 고려한 데이터를 확보하는 것은 현실적으로 불가능하다

 

What if \(X_1,..., X_n\) are independent, then \(P(X_1,..., X_n) = P(X_1)... P(X_n) \)

- Number of cases => \( 2^n\)

- How many parameters do we need to specify? =>

 

Q. n 왜 \(2^n-1\) 에서 n으로 줄어들었나?

 

A.Conditional Independence

1. Chain rule

2. Baye's rule

3. Conditional independence

 

Autoregressive Model

- suppose we have 28 x 28 binary pixels

- Our goal is to learn \( P(X) = P(X_1,..., x_{784}) over X \in {0,1}^{784} \)

- Then, how can we parametrize \(P(x)\)?

  - Let's use the chain rule to factor the joint distribution

  - In other words,

    - \(P(X_{1:784} = P(X_1) P(X_2|X_1) P(X_3|X_2)...\)

    - This is called an autoregressive model.

    - Note that we need an ordering of all random variables

 

 

첫 번째 nn model : NAEA(Neural Autoregressive Density Estimator)

: 단순히 생성할 수 있을 뿐만 아니라 새로운 입력에 대한 density를 구할 수 있음

- NADE is an explicit model that can compute the density of the given inputs

- BTW, how can we conpute the density of the given image? conditional probability

- continuous random variables에 대해서는 Mixture of Gaussian(MoG)와 같은 방법론을 사용할 수 있음 

 

 

'Have Done > Generative Model' 카테고리의 다른 글

cGAN(conditional generative model)  (1) 2023.12.07
Generative Model Basic 2  (2) 2023.12.05
Conditional Generative model  (0) 2023.12.05

댓글