Maximum Likelihood Learning
- parameter가 주어졌을 때 데이터가 얼마나 likely 한지(뭐랑?), 이를 높이는 방향으로 학습함
- 뭘 Metric으로 삼을까? -> KL-divergence
- minimizing KL-divergence <=> Maximizing the expected log-likelihood
- empirical log-likelihood is approximation of expected log-likelihood?
- ERM(empirical risk minimization)을 보통 사용하지만 overfitting 문제를 갖고 있음
*jensen-shannon divegence(GAN), Wasserstein distance(WAE, AAE)등이 metric으로 쓰임
Latent Variable Models (Variational AutoEncoder는 generative model, AutoEncoder는 아님)
- Key limitation
- it is an intractable model(hard to evaluate likelihood)
- The prior fitting term should be differentiable, hence it is hard to use diverse latent prior distributions.
- In most cases, we use an isotropic Gaussian where we have a closed-form for the prior fitting term.
Generative Adversarial Networks
- minmax game between generator and discriminator.
- min generator, max discriminator
Diffusion Models - noise로부터 image를 만듦, 성능이 월등히 좋음
- progressively generate images from noise
- Diffusion(Forward) process
- The reverse process is learned in such a way to denoise the perturbed image back to a clean image <- 여기가 학습하는 부분임
'Have Done > Generative Model' 카테고리의 다른 글
cGAN(conditional generative model) (1) | 2023.12.07 |
---|---|
Generative model Basic 1 (0) | 2023.12.05 |
Conditional Generative model (0) | 2023.12.05 |
댓글